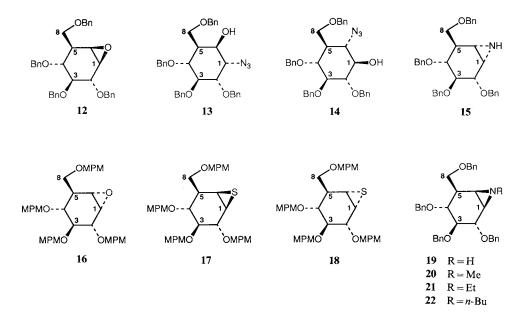

A FAMILY OF CYCLOPHELLITOL ANALOGS: SYNTHESIS AND EVALUATION

Sir:


Cyclophellitol (1) was isolated from culture filtrates of mushroom, Phellinus sp.1), and found to be a highly specific and effective irreversible inactivator of β -glucosidases^{2,3)}. It is generally believed that the flattened half-chair conformation of the glycosyl intermediate is important for transition state binding by the enzyme $^{4,5)}$. The groundstate conformation of cyclophellitol (1) resembles the flattened half-chair conformation. Therefore, it is anticipated that the cyclophellitol analogs would have a variety of glycosidase-inhibitory activities. Recently, we have synthesized 1,6-epi-cyclophellitol $(2)^{6,7}$, the α -manno type analog 3^{8} , and the aziridine analog 4⁸) (7-azabicyclo[4.1.0]heptane derivative), together with cyclophellitol (1) itself^{7,9)}. In a limited inhibitory activity study $^{6 \sim 9}$, it was shown that the glycoside-cleaving enzymes recognized the configurations of these compounds. It is noteworthy that the aziridine analog 4 showed a high inhibitory activity against almond β -glucosidase of IC₅₀ $0.22 \,\mu g/ml^{8}$. To better understand the structure-inhibition relationship, we synthesized another aziridine analog 5, the thiirane analogs 6 and 7, the N-alkyl aziridine analogs $8 \sim 10$, and the N-acyl aziridine analog 11. A preliminary glucosidase inhibitory activity study was also performed.

The synthesis of 5 began with natural cyclophelli-

tol (1) according to the same procedures used for the synthesis of 4^{8} . Cyclophellitol (1) was benzylated with BnBr and NaH in DMF at 25°C for 0.5 hour to give the tetra-O-benzyl derivative 12 in 90% yield. Treatment of 12 with NaN₃ in DMF (110°C, 12 hours) afforded 13 and 14 in 27% and 41% yield, respectively: 13: $[\alpha]_{D}^{25} + 15^{\circ}$ (c 0.34, CHCl₃); ⁻¹H NMR (270 MHz, CDCl₃) δ 1.90 (1H, m, 5-H[†]), 4.02 (1H, s, OH); Anal Calcd for C₃₅H₃₇N₃O₅: C 72.52, H 6.43, N 7.25. Found: C 72.92, H 6.97, N 6.86. 14: $[\alpha]_{D}^{25} - 2.4^{\circ}$ (c 0.76, CHCl₃); ¹H NMR (270 MHz, CDCl₃) δ 1.48 (1H, dddd, $J_{4,5}$ = $J_{5,6} = 10.8 \text{ Hz}, \quad J_{5,8} = J_{5,8'} = 2.0 \text{ Hz}, \quad 5\text{-H}^{\dagger}), \quad 2.51$ $(1H, d, J = 2.0 \text{ Hz}, \text{OH}), 3.49 (1H, ddd, J_{1,2} = J_{1,6} =$ 9.8 Hz, 1-H), 3.70 (1H, dd, 6-H); Anal Calcd for C35H37N3O5: C 72.52, H 6.43, N 7.25. Found: C 72.59, H 6.31, N 7.03. The ¹H NMR spectrum of 14 clearly indicated $(J_{1,2}=J_{1,6}=9.8 \text{ Hz}, J_{5,6}=$ 10.8 Hz) that the C-1 hydroxyl group and the C-6 azide group of 14 are oriented equatorially. Since the one-step procedure (Ph₃P, toluene, 110°C, $(0.5 \text{ hour})^{(8)}$ to obtain the aziridine 15 from a mixture of 13 and 14 did not succeed, a three-step procedure was necessary for this transformation: i) MsCl, pyridine, 25°C, 12 hours, ii) Ph₃P, THF, 25°C, 0.5 hour, then H₂O, 25°C, 12 hours, iii) NaOMe, MeOH, 25°C, 1.5 hours, 40% overall yield. Finally, de-O-benzylation of 15 (Li, liq NH₃, ether, -78° C, 1 hour) afforded the aziridine analog 5 in 60% yield: $[\alpha]_{\rm D}^{25}$ +28° (c 0.12, H₂O); ¹H NMR (270 MHz, D_2O_1 , DOH = 4.80) δ 1.94 (1H, m, 5-H), 2.41 (1H,

[†] The carbon-numbering protocol of **13** and **14** anticipates conveniently the construction of the aziridine analog **5**.

d, $J_{5,6} = 0$ Hz, $J_{1,6} = 8.2$ Hz, 6-H), 2.66 (1H, dd, $J_{1,2} = 3.8$ Hz, 1-H), 3.06 ~ 3.19 (2H, m, 3- and 4-H), 3.73 (1H, dd, $J_{gem} = 11.0$ Hz, $J_{5,8} = 6.8$ Hz, 8-H), 3.83 (1H, dd, $J_{2,3} = 8.6$ Hz, 2-H), 3.92 (1H, dd, $J_{5,8'} = 4.0$ Hz, 8'-H).

The thiirane analogs 6 and 7 were prepared as follows. 1,6-epi-Cyclophellitol (2) was protected as its tetra-O-methoxybenzyl ether 16 in 60% yield by treatment with 4-methoxybenzyl (MPM) chloride and NaH in DMF at 25°C for 20 hours. Thiirane formation¹⁰) was realized by treatment of 16 with Ph₃P=S and trifluoroacetic acid in benzene at 60°C for 48 hours to give 17 in 52% yield: $[\alpha]_{\rm D}^{25}$ +73° (c 0.18, CHCl₃); ¹H NMR (270 MHz, CDCl₃) δ 3.17 (1H, d, $J_{1,6} = 6.2 \text{ Hz}$, $J_{1,2} = 0 \text{ Hz}$, 1-H), 3.57 (1H, dd, J_{5,6}=4.0 Hz, 6-H); Anal Calcd for C39H44O8S: C 69.62, H 6.59. Found: C 69.55, H 6.45. It was assumed by the proposed reaction mechanism¹⁰⁾ that the C1- and the C6-configurations were inverted under these conditions. Finally, de-O-methoxybenzylation of 17 (DDQ, CH₂Cl₂-MeOH-H₂O, 25° C, 12 hours)¹¹⁾ afforded the thiirane analog 6 in 65% yield: $[\alpha]_{\rm D}^{25} + 102^{\circ}$ (c 0.22, MeOH); ¹H NMR (270 MHz, CD₃OD) δ 2.31 (1H, m, 5-H), 3.09 (1H, d, $J_{1,6} = 6.6$ Hz, $J_{1,2} = 0$ Hz, 1-H), 3.15~3.25 (2H, m, 3- and 4-H), 3.52 (1H, dd, $J_{5,6} = 4.0 \text{ Hz}, 6-\text{H}), 3.56 (1\text{H}, \text{dd}, J_{\text{gem}} = 10.4 \text{ Hz},$ $J_{5,8} = 9.0$ Hz, 8-H), 3.99 (1H, d, $J_{2,3} = 7.6$ Hz, 2-H), 4.11 (1H, d, J_{5,8'}=4.0 Hz, 8'-H). In an analogous fashion, cyclophellitol (1) was transformed to 7 via 18 in 20% overall yield: 18: ¹H NMR (270 MHz, CDCl₃) δ 3.08 (1H, dd, $J_{1,6} = 6.8$ Hz, $J_{5,6} = 2.0$ Hz, 6-H), 3.33 (1H, dd, $J_{1,2} = 3.8$ Hz, 1-H), 3.77, 3.78, 3.80, 3.82 (each 3H, each s, $4 \times OMe$). 7: $[\alpha]_D^{25}$ +110° (c 0.16, MeOH); ¹H NMR (270 MHz, CD₃OD) δ 2.28 (1H, m, 5-H), 3.16 (1H, dd, $J_{1,6} =$ 6.0 Hz, $J_{5,6} = 0$ Hz, 6-H), 3.23 (1H, t, $J_{3,4} = J_{4,5} =$ 10.0 Hz, 4-H), 3.42 (1H, dd, $J_{1,2} = 4.0$ Hz, 1-H), 3.49 (1H, dd, $J_{2,3} = 8.4$ Hz, 3-H), 3.69 (1H, dd, $J_{gem} = 10.8$ Hz, $J_{5,8} = 6.6$ Hz, 8-H), 3.89 (1H, dd, $J_{5,8'} = 4.0$ Hz, 8'-H), 4.02 (1H, dd, 2-H).

The N-alkyl aziridine analogs $8 \sim 10$ were prepared from the tetra-O-benzyl aziridine derivative 19⁸⁾. 19 was subjected to the N-alkylation conditions $(Me_2SO_4/K_2CO_3/DMF, 25^{\circ}C, 15 \text{ hours, } Et_2SO_4/$ $K_2CO_3/DMF/50^{\circ}C/48$ hours, and *n*-BuI/K₂CO₃/ DMF/50°C/20 hours, respectively) to afford 20, 21 and 22 in 60%, 35% and 50% yield, respectively. De-O-benzylation (Li, liq NH₃, ether, -70° C, 1 hour) of the above compounds provided 8, 9 and 10 in 96%, 75% and 70% yield, respectively: 8: $[\alpha]_{D}^{25} + 128^{\circ}$ (c 0.12, MeOH); ¹H NMR (270 MHz, CD₃OD) δ 1.62 (1H, d, $J_{1,6} = 6.4$ Hz, $J_{1,2} = 0$ Hz, 1-H), 1.89 (1H, m, 5-H), 1.99 (1H, dd, $J_{5.6} = 3.2$ Hz, 6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, $J_{3,4} = J_{4,5} =$ 10.0 Hz, 4-H), 3.08 (1H, dd, $J_{2,3}$ = 8.0 Hz, 3-H), 3.57 (1H, d, 2-H), 3.62 (1H, dd, $J_{gem} = J_{5,8} = 10.6$ Hz, 8-H), 3.98 (1H, dd, $J_{5,8'} = 5.0$ Hz, 8'-H). 9: $[\alpha]_D^{25}$ +77° (c 0.12, MeOH); ¹H NMR (270 MHz, CD₃OD) δ 1.15 (3H, t, J=6.8 Hz, Me), 1.67 (1H, d, J_{1.6}= $6.4 \text{ Hz}, J_{1,2} = 0 \text{ Hz}, 1 \text{-H}$, 1.88 (1H, m, 5-H), 2.00 $(1H, dd, J_{5,6} = 3.2 Hz, 6-H), 2.11, 2.48$ (each 1H, each m, NCH₂), 3.00 (1H, dd, $J_{3,4} = J_{4,5} = 10.0$ Hz, 4-H), 3.10 (1H, dd, $J_{2,3} = 8.0$ Hz, 3-H), 3.57 (1H, d,

Enzyme tested	5	6	7	8	9	10	11
β -Glucosidase	32			24		1.3	0.3
(almond) α-Glucosidase	(84)	(2) ^a	(8)	(82)	(18)	(98)	(95) ^ь
(baker yeast)	(12)	(44)	(55)	(46)	(38)	(20)	(66)

Table 1. Glucosidase inhibitory activities of $5 \sim 11$. [IC₅₀ (μ g/ml) (I % at 100 μ g/ml in parentheses)].

^a $30 \,\mu \text{g/ml}.$

^b 10 μ g/ml.

2-H), 3.61 (1H, dd, $J_{gem} = J_{5,8} = 10.0$ Hz, 8-H), 3.99 $(1H, dd, J_{5,8'} = 4.0 \text{ Hz}, 8'-\text{H})$. 10: $[\alpha]_{D}^{25} + 65^{\circ} (c \ 0.33, c)$ MeOH); ¹H NMR (270 MHz, CD₃OD) δ 0.94 (3H, t, J = 7.0 Hz, Me), 1.36, 1.56 (each 2H, each m, CH_2CH_2), 1.64 (1H, d, $J_{1.6} = 6.4 Hz$, $J_{1.2} = 0 Hz$, 1-H), 1.88 (1H, m, 5-H), 1.98 (1H, dd, J_{5,6} = 3.2 Hz, 6-H), 2.16, 2.34 (each 1H, each m, NCH₂), 3.02 (1H, dd, $J_{3,4} = J_{4,5} = 10.0$ Hz, 4-H), 3.10 (1H, dd, $J_{2,3} =$ 8.0 Hz, 3-H), 3.58 (1H, d, 2-H), 3.62 (1H, dd, $J_{\text{gem}} = J_{5,8} = 10.0 \text{ Hz}, 8-\text{H}), 3.99 (1\text{H}, \text{dd}, J_{5,8'} =$ 4.6 Hz, 8'-H). The N-butyryl analog 11 was directly prepared from 4 by treatment with butyryl chloride and triethylamine in MeOH at 25°C for 15 minutes in 65% yield: $[\alpha]_{D}^{25}$ + 56° (c 0.26, MeOH); ¹H NMR $(270 \text{ MHz}, D_2 \text{O}, \text{DOH} = 4.80) \delta 0.91 (3\text{H}, \text{t}, J =$ 7.0 Hz, Me), 1.62 (2H, sextet, J = 7.0 Hz, CH₂), 2.08 (1H, m, 5-H), 2.50 (2H, t, J=7.0 Hz, COCH₂), 2.86 (1H, d, $J_{1,6} = 6.4$ Hz, $J_{1,2} = 0$ Hz, 1-H), 3.17 (1H, dd, $J_{5.6} = 2.4$ Hz, 6-H), 3.21 (1H, dd, $J_{3,4} = J_{4,5} =$ 10.4 Hz, 4-H), 3.34 (1H, dd, $J_{2,3} = 8.4$ Hz, 3-H), 3.76 (1H, dd, $J_{gem} = 11.0 \text{ Hz}$, $J_{5,8} = 8.4 \text{ Hz}$, 8-H), 3.81 (1H, d, 2-H), 4.04 (1H, dd, J_{5,8'} = 4.4 Hz, 8'-H).

The glycosidase inhibitory activities of $5 \sim 11$ were generally assayed according to the method reported by SAUL et al.12) and are shown in Table 1. The previous evaluation^{$6 \sim 9$} of 1, 2, 3 and 4 revealed that the glycoside-cleaving enzymes recognized the configurations of these compounds including the epoxidic and the aziridinic configurations. On the contrary, the new aziridine analog 5 showed inhibitory activity only against almond β -glucosidase with an IC₅₀ of 32 μ g/ml (indeed, 5 was a weak inhibitor of baker yeast α -glucosidase, Escherichia coli β -galactosidase, and jack bean α -mannosidase, data not shown). These findings reflect that the inhibition mechanisms of the epoxide and the aziridine analogs are different. Neither the thiirane analog 6 nor 7 showed significant activities. Various N-alkyl derivatives of 1-deoxynojirimycin were shown to have different inhibition properties, especially anti-HIV activity¹³⁾. Among 8, 9 and 10, the *N*-butyl aziridine analog 10 is a better almond β -glucosidase inhibitor (IC₅₀ 1.3 μ g/ml) than the *N*-methyl and *N*-ethyl derivatives. Furthermore, the *N*-butyryl analog 11 showed inhibitory activity against almond β -glucosidase of IC₅₀ 0.3 μ g/ml. These results suggest that the *N*-substituent may play a key role for inhibition. Further study along this line is now in progress.

Acknowledgments

We are grateful to the Institute of Microbial Chemistry for the generous support of our program. We thank Professor KAZUO UMEZAWA, Keio University, for enzyme assays of $6 \sim 11$ and Pharmaceutical Research Laboratories, Meiji Seika Kaisha, Ltd. for those of 5. Financial support by CIBA-GEIGY Foundation (Japan) for the Promotion of Science is gratefully acknowledged.

> Masaya Nakata Chu Chong Yoshihisa Niwata Kazunobu Toshima Kuniaki Tatsuta^{††}

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

(Received July 22, 1993)

References

- ATSUMI, S.; UMEZAWA, H. INUMA, H. NAGANAWA, H. NAKAMURA, Y. IITAKA & T. TAKEUCHI: Production isolation and structure determination of a novel β-glucosidase inhibitor, cyclophellitol, from *Phellinus* sp. J. Antibiotics 43: 49~53, 1990
- 2) ATSUMI, S.; H. IINUMA, C. NOSAKA & K. UMEZAWA:

^{††} Present address: Department of Pure and Applied Chemistry, Graduate School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan

Biological activities of cyclophellitol. J. Antibiotics 43: 1579~1585, 1990

- WITHERS, S. G. & K. UMEZAWA: Cyclophellitol: A naturally occurring mechanism-based inactivator of β-glucosidases. Biochem. Biophys. Res. Commun. 177: 532~537, 1991
- 4) TONG, M. K.; G. PAPANDREOU & B. GANEM: Potent, broad-spectrum inhibition of glycosidases by an amidine derivative of D-glucose. J. Am. Chem. Soc. 112: 6137~6139, 1990
- LOOK, G. C.; C. H. FOTSCH & C.-H. WONG: Enzymecatalyzed organic synthesis: Practical routes to aza sugars and their analogs for use as glycoprocessing inhibitors. Acc. Chem. Res. 26: 182~190, 1993
- TATSUTA, K.; Y. NIWATA, K. UMEZAWA, K. TOSHIMA & M. NAKATA: Enantiospecific synthesis and biological evaluation of 1,6-*epi*-cyclophellitol. J. Antibiotics 44: 456~458, 1991
- TATSUTA, K.; Y. NIWATA, K. UMEZAWA, K. TOSHIMA & M. NAKATA: Total syntheses of glucosidase inhibitors, cyclophellitols. Carbohydr. Res. 222: 189~203, 1991
- TATSUTA, K.; Y. NIWATA, K. UMEZAWA, K. TOSHIMA & M. NAKATA: Syntheses and enzyme inhibiting activities of cyclophellitol analogs. J. Antibiotics 44:

912~914, 1991

- TATSUTA, K.; Y. NIWATA, K. UMEZAWA, K. TOSHIMA & M. NAKATA: Enantiospecific total synthesis of a β-glucosidase inhibitor, cyclophellitol. Tetrahedron Lett. 31: 1171~1172, 1990
- CHAN, T. H. & J. R. FINKENBINE: Facile conversion of oxiranes to thiiranes by phosphine sulfides. Scope, stereochemistry, and mechanism. J. Am. Chem. Soc. 94: 2880~2882, 1972
- HORITA, K.; T. YOSHIOKA, T. TANAKA, Y. OIKAWA & O. YONEMITSU: On the selectivity of deprotection of benzyl, MPM (4-methoxybenzyl) and DMPM (3,4-dimethoxybenzyl) protecting groups for hydroxy functions. Tetrahedron 42: 3021~3028, 1986
- SAUL, R.; J. P. CHAMBERS, R. J. MOLYNEUX & A. D. ELBEIN: Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase. Arch. Biochem. Biophys. 221: 593~597, 1983
- KARPAS, A.; G. W. J. FLEET, R. A. DWEK, S. PETURSSON, S. K. NAMGOONG, N. G. RAMSDEN, G. S. JACOB & T. W. RADEMACHER: Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sci. U.S.A. 85: 9229~9233, 1988