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A FAMILY OF CYCLOPHELLITOL ANALOGS:
SYNTHESIS AND EVALUATION

Sir:
Cyclophellitol (1) was isolated from culture

filtrates of mushroom, Phellinus sp.1}, and found
to be a highly specific and effective irreversible
inactivator of /?-glucosidases2'3). It is generally

believed that the flattened half-chair conformation
of the glycosyl intermediate is important for transi-

tion state binding by the enzyme4'5). The ground-
state conformation of cyclophellitol (1) resembles

the flattened half-chair conformation. Therefore, it
is anticipated that the cyclophellitol analogs would

have a variety of glycosidase-inhibitory activities.
Recently, we have synthesized \ ,6-ep/-cyclophellitol
(2)6>7), the a-manno type analog 38), and the aziri-
dine analog 48) (7-azabicyclo[4. 1.0]heptane deriva-

tive), together with cyclophellitol (1) itself7)9).
In a limited inhibitory activity study6~9), it was
shown that the glycoside-cleaving enzymes re-

cognized the configurations of these compounds. It
is noteworthy that the aziridine analog 4 showed a

high inhibitory activity against almond /?-glucosi-
dase of IC50 0.22//g/ml8). To better understand the

structure-inhibition relationship, we synthesized
another aziridine analog 5, the thiirane analogs 6

and 7, the A^-alkyl aziridine analogs 8~ 10, and the
N-acyl aziridine analog ll. A preliminary glucosi-
dase inhibitory activity study was also performed.

The synthesis of 5 began with natural cyclophelli-

tol (1) according to the same procedures used for
the synthesis of 48). Cyclophellitol (1) was benzyl-
ated with BnBr and NaH in DMFat 25°C for 0.5
hour to give the tetra-O-benzyl derivative 12 in 90%
yield. Treatment of 12 with NaN3 in DMF(110°C,
12hours) afforded 13 and 14 in 27% and 41% yield,
respectively: 13: [a]£5 +15° (c 0.34, CHC13); *H
NMR (270MHz, CDC13) 3 1.90 (1H, m, 5-H*),

4.02 (1H, s, OH); Anal Calcd for C35H37N3O5: C
72.52, H 6.43, N 7.25. Found: C 72.92, H 6.97,
N 6.86. 14: [a]£5 -2.4° (c 0.76, CHC13); XH
NMR (270MHz, CDC13) 3 1.48 (1H, dddd, /4i5=
/5>6=10.8Hz, J5,8=J5,8 =2.0Hz, 5-HO, 2.51

(1H, d,/=2.0Hz, OH), 3.49(1H, ddd, Jl 2=JU6=
9.8Hz, 1-H), 3.70 (1H, dd, 6-H); Anal Calcd for
C35H37N3O5: C 72.52, H 6.43, N 7.25. Found:

C 72.59, H 6.31, N 7.03. The XH NMR spectrum
of 14 clearly indicated (/} 2=/1 6=9.8Hz, J5 6=

10.8Hz) that the C-l hydroxyl group and the C-6
azide group of 14 are oriented equatorially. Since
the one-step procedure (Ph3P, toluene, 110°C,
0.5 hour)8) to obtain the aziridine 15 from a mixture
of 13 and 14 did not succeed, a three-step procedure
was necessary for this transformation: i) MsCl,
pyridine, 25°C, 12hours, ii) Ph3P, THF, 25°C,

0.5hour, then H2O, 25°C, 12hours, iii) NaOMe,
MeOH, 25°C, 1.5 hours, 40% overall yield. Finally,
de-O-benzylation of 15 (Li, liq NH3, ether, -78°C,
1 hour) afforded the aziridine analog 5 in 60% yield:
[oc]£5 +28° (c 0.12, H2O); XH NMR (270MHz,
D2O, DOH=4.80) 3 1.94 (1H, m, 5-H), 2.41 (1H,

The carbon-numbering protocol of 13 and 14 anticipates conveniently the construction of the aziridine analog 5.
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d, /5,6=0Hz, /1>6=8.2Hz, 6-H), 2.66 (1H, dd,
/1)2=3.8Hz, 1-H), 3.06-3.19 (2H, m, 3- and 4-H),

3.73 (1H, dd, /gem=11.0Hz, /58=6.8Hz, 8-H),

3.83 (1H, dd, /23=8.6Hz, 2-H), 3.92 (1H, dd,

/5,8 =4.0Hz, 8'-H).

The thiirane analogs 6 and 7 were prepared as
follows. l,6-e/?/-Cyclophellitol (2) was protected as
its tetra-O-methoxybenzyl ether 16 in 60% yield by

treatment with 4-methoxybenzyl (MPM) chloride
and NaH in DMFat 25°C for 20hours. Thiirane
formation10) was realized by treatment of 16 with

Ph3P=S and trifluoroacetic acid in benzene at
60°C for 48hours to give 17 in 52% yield: [a]£5
+73° (c0.18, CHC13); XH NMR (270MHz, CDC13)

5 3.17 (1H, d, /1?6=6.2Hz, /12=0Hz, l-H),
3.57 (1H, dd, 75t6=4.0Hz, 6-H); Anal Calcd for

C39H44O8S: C 69.62, H 6.59. Found: C 69.55, H
6.45. It was assumed by the proposed reaction
mechanism10) that the Cl- and the C6-configura-

tions were inverted under these conditions. Finally,
de-0-methoxybenzylation of 17 (DDQ, CH2C12 -
MeOH-H2O, 25°C, 12hours)U) afforded the

thiirane analog 6 in 65% yield: [a]£5 + 102° (c 0.22,
MeOH); lH NMR (270MHz, CD3OD) S 2.31 (1H,

m, 5-H), 3.09 (1H, d, /1>6=6.6Hz, Jl2=0Hz,

1-H), 3.15-3.25 (2H, m, 3- and4-H), 3.52 (1H, dd,
J5>6=4.0Hz, 6-H), 3.56 (1H, dd, /gem=10.4Hz,

/5>8=9.0Hz, 8-H), 3.99 (1H, d, /2,3=7.6Hz, 2-H),

4.ll (1H, d, /5j8'=4.0Hz, 8'-H). In an analogous

fashion, cyclophellitol (1) was transformed to 7 via
18 in 20% overall yield: 18: XH NMR (270MHz,

CDC13) S 3.08 (1H, dd, /lf6=6.8Hz, /5,6=2.0Hz,

6-H), 3.33 (1H, dd, /12=3.8Hz, 1-H), 3.77, 3.78,

3.80, 3.82 (each 3H, each s, 4xOMe). 7: [a]£5
+110° (c 0.16, MeOH); lH NMR (270MHz,

CD3OD) S 2.28 (1H, m, 5-H), 3.16 (1H, dd, JU6=
6.0Hz, /56=0Hz, 6-H), 3.23 (1H, t, J3A=J^5=
10.0Hz, 4-H), 3.42 (1H, dd, /12=4.0Hz, 1-H),

3r49 (1H, dd, /23=8.4Hz, 3-H), 3.69 (1H, dd,
/gem=10.8Hz, /58=6.6Hz, 8-H), 3.89 (1H, dd,
J5,8 =4.0Hz, 8'-H), 4.02 (1H, dd, 2-H).

The 7V-alkyl aziridine analogs 8~10 were pre-

pared from the tetra-O-benzyl aziridine derivative
198). 19 was subjected to the TV-alkylation conditions
(Me2SO4/K2CO3/DMF, 25°C, 15hours, Et2SO4/
K2CO3/DMF/50°C/48 hours, and «-BuI/K2CO3/

DMF/50°C/20 hours, respectively) to afford 20, 21
and 22 in 60%, 35% and 50% yield, respectively.
De-O-benzylation (Li, liq NH3, ether, -70°C,

1 hour) of the above compounds provided 8, 9 and
10 in 96%, 75% and 70% yield, respectively: 8:
[a]£5+128° (c 0.12, MeOH); *H NMR (270MHz,
CD3OD) S 1.62 (1H, d, /16=6.4Hz, /12=0Hz,

1-H), 1.89 (1H,m, 5-H), 1.99 (1H, dd, /5,6=3.2Hz,

6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, /34=/4 5=
10.0Hz, 4-H), 3.08 (1H, dd,/2;3=8.0Hz, 3-H), 3.57(1H, d, 2-H), 3.62 (1H, dd,'/gern=/58=10.6Hz,

8-H), 3.98 (1H, dd, /5,r=5.0Hz, 8'-H). 9: [a]£5
+77° (c 0.12, MeOH); XH NMR (270 MHz, CD3OD)
S 1.15 (3H, t, /=6.8Hz, Me), 1.67 (1H, d, JU6=

6.4Hz, /12=0Hz, 1-H), 1.88 (1H, m, 5-H), 2.00
(1H, dd, }5,6=3.2Hz, 6-H), 2.ll, 2.48 (each 1H,

each m, NCH2), 3.00 (1H, dd, /3>4=/4,5=10.0Hz,
4-H), 3.10 (1H, dd, /2)3=8.0Hz, 3-H), 3.57 (1H, d,



VOL. 46 NO. 12 THE JOURNAL OF ANTIBIOTICS

Table 1. Glucosidase inhibitory activities of 5-ll. [IC50 (fig/ml) (I % at lOO wg/ml in parentheses)].

1921

Enzyme tested 5 6 7 8 9 10 ll

/?-Glucosidase 3 2
(almond) (84) ( If ( 8)

a-Glucosidase
(baker yeast) (1 2) (44) (55)

24
(82)

(46)
(18)

(38)

a 30/ig/ml.
b 10/ig/ml.

2-H), 3.61 (1H, dd, /gem=/5)8=10.0Hz, 8-H), 3.99

(1H,dd,J^s>=4.0Hz, 8'-H). 10: [a]£5 +65° (c0.33,

MeOH); rH NMR (270MHz, CD3OD) (5 0.94 (3H,
t, /=7.0Hz, Me), 1.36, 1.56 (each 2H, each m,
CH2CH2), 1.64 (1H, d, /16=6.4Hz, /12=0Hz,

1-H), 1.88 (1H,m, 5-H), 1.98 (1H, dd,/5 6=3.2Hz,

6-H), 2.16, 2.34(each 1H, eachm, NCH2), 3.02 (1H,
dd, J3A= /4>5=10.0Hz, 4-H), 3.10 (1H, dd, J2t3=8.0Hz, 3-H), 3.58 (1H, d, 2-H), 3.62 (1H,'dd,

^gem=^,8=10.0Hz, 8-H), 3.99 (1H, dd, /5i8,=
4.6 Hz, 8'-H). The 7V-butyryl analog ll was directly
prepared from 4 by treatment with butyryl chloride
and triethylamine in MeOHat 25°C for 15minutes
in 65% yield: [a]£5 +56° (c0.26, MeOH); *H NMR
(270MHz, D2O, DOH=4.80) 8 0.91 (3H, t, /=

7.0Hz, Me), 1.62 (2H, sextet,.7=7.0Hz, CH2), 2.08
(1H, m, 5-H), 2.50 (2H, t, /=7.0Hz, COCH2), 2.86

(1H, d, 71>6=6.4Hz, /lj2=0Hz, 1-H), 3.17 (1H,

dd, /5,6=2.4Hz, 6-H), 3.21 (1H, dd, J3A=J45=
10.4Hz, 4-H), 3.34 (1H, dd, /2)3=8.4Hz, 3-H),
3.76 (1H, dd, /gcm=11.0Hz, /5>'8=8.4Hz, 8-H),

3.81 (1H, d, 2-H), 4.04(1H, dd, J5iV=4.4Hz, 8'-H).
The glycosidase inhibitory activities of 5~11

were generally assayed according to the method
reported by Saul et al.12) and are shown in Table
1. The previous evaluation6~9) of 1, 2, 3 and 4
revealed that the glycoside-cleaving enzymes rec-
ognized the configurations of these compounds
including the epoxidic and the aziridinic configura-
tions. On the contrary, the new aziridine analog 5
showed inhibitory activity only against almond
/?-glucosidase with an IC50 of 32/ig/ml (indeed, 5
was a weak inhibitor of baker yeast a-glucosidase,
Escherichia coli /?-galactosidase, and jack bean
a-mannosidase, data not shown). These findings
reflect that the inhibition mechanisms of the epox-
ide and the aziridine analogs are different. Nei-

ther the thiirane analog 6 nor 7 showed significant
activities. Various 7V-alkyl derivatives of 1-deoxy-

nojirimycin were shown to have different inhibition

1.3
(98)

(20)
0.3

(95)"

(66)

properties, especially anti-HIV activity13). Among
8, 9 and 10, the TV-butyl aziridine analog 10 is a
better almond /?-glucosidase inhibitor (IC50 1.3
/xg/ml) than the TV-methyl and TV-ethyl derivatives.
Furthermore, the TV-butyryl analog ll showed

inhibitory activity against almond /?-glucosidase of
IC50 0.3/jg/ml. These results suggest that the

iV-substituent may play a key role for inhibition.
Further study along this line is now in progress.
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